Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(4): e10000, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37091559

RESUMO

Associating morphological features with ecological traits is essential for understanding the connection between organisms and their roles in the environment. If applied successfully, functional trait approaches link form and function in an organism. However, functional trait data not associated with natural history information provide an incomplete picture of an organism's role in the ecosystem. Using data on the relative trophic position of 592 ant (Formicidae) samples comprising 393 species from 11 subfamilies and 19 widely distributed communities, we tested the extent to which commonly used functional proxies (i.e., morphometric traits) predict diet/trophic position as estimated from stable isotopes (δ15N). We chose ants as a group due to their ubiquity and abundance, as well as the wealth of available data on species traits and trophic levels. We measured 12 traits that have previously been identified as functionally significant, and corrected trait values for size and evolutionary history by using phylogenetically corrected trait residuals. Estimated trophic positions varied from 0.9 to 4.8 or roughly 4 trophic levels. Morphological data spanned nearly the entire size range seen in ants from the smallest (e.g., Strumigenys mitis total length 1.1 mm) to the largest species (e.g., Dinoponera australis total length 28.3 mm). We found overall body size, relative eye position, and scape length to be informative for predicting diet/trophic position in these communities, albeit with relatively weak predictive values. Specifically, trophic position was negatively correlated with body size and positively correlated with sensory traits (higher eye position and scape length). Our results suggest that functional trait-based approaches can be informative but should be used with caution unless clear links between form and function have been established.

2.
Integr Comp Biol ; 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35689666

RESUMO

Muscle fatigue can reduce performance potentially affecting an organism's fitness. However, some aspects of fatigue could be overcome by employing a latch-mediated spring actuated system (LaMSA) where muscle activity is decoupled from movement. We estimated the effects of muscle fatigue on different aspects of mandible performance in six species of ants, two whose mandibles are directly actuated by muscles and four that have LaMSA "trap-jaw" mandibles. We found evidence that the LaMSA system of trap-jaw ants may prevent some aspects of performance from declining with repeated use, including duration, acceleration and peak velocity. However, inter-strike interval increased with repeated strikes suggesting that muscle fatigue still comes into play during the spring loading phase. In contrast, one species with directly actuated mandibles showed a decline in bite force over time. These results have implications for design principles aimed at minimizing the effects of fatigue on performance in spring and motor actuated systems.

3.
Integr Comp Biol ; 60(5): 1193-1207, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32386301

RESUMO

The field of comparative biomechanics strives to understand the diversity of the biological world through the lens of physics. To accomplish this, researchers apply a variety of modeling approaches to explore the evolution of form and function ranging from basic lever models to intricate computer simulations. While advances in technology have allowed for increasing model complexity, insight can still be gained through the use of low-parameter "simple" models. All models, regardless of complexity, are simplifications of reality and must make assumptions; "simple" models just make more assumptions than complex ones. However, "simple" models have several advantages. They allow individual parameters to be isolated and tested systematically, can be made applicable to a wide range of organisms and make good starting points for comparative studies, allowing for complexity to be added as needed. To illustrate these ideas, we perform a case study on body form and center of mass stability in ants. Ants show a wide diversity of body forms, particularly in terms of the relative size of the head, petiole(s), and gaster (the latter two make-up the segments of the abdomen not fused to thorax in hymenopterans). We use a "simple" model to explore whether balance issues pertaining to the center of mass influence patterns of segment expansion across major ant clades. Results from phylogenetic comparative methods imply that the location of the center of mass in an ant's body is under stabilizing selection, constraining the center of mass to the middle segment (thorax) over the legs. This is potentially maintained by correlated rates of evolution between the head and gaster on either end. While these patterns arise from a model that makes several assumptions/simplifications relating to shape and materials, they still offer intriguing insights into the body plan of ants across ∼68% of their diversity. The results from our case study illustrate how "simple," low-parameter models both highlight fundamental biomechanical trends and aid in crystalizing specific questions and hypotheses for more complex models to address.


Assuntos
Formigas , Evolução Biológica , Tamanho Corporal , Cabeça/anatomia & histologia , Animais , Formigas/anatomia & histologia , Fenômenos Biomecânicos , Simulação por Computador , Filogenia
4.
Annu Rev Entomol ; 63: 575-598, 2018 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-29068707

RESUMO

Body size is a key life-history trait influencing all aspects of an organism's biology. Ants provide an interesting model for examining body-size variation because of the high degree of worker polymorphism seen in many taxa. We review worker-size variation in ants from the perspective of factors internal and external to the colony that may influence body-size distributions. We also discuss proximate and ultimate causes of size variation and how variation in worker size can promote worker efficiency and colony fitness. Our review focuses on two questions: What is our current understanding of factors influencing worker-size variation? And how does variation in body size benefit the colony? We conclude with recommendations for future work aimed at addressing current limitations and ask, How can we better understand the contribution of worker body-size variation to colony success? And, what research is needed to address gaps in our knowledge?


Assuntos
Formigas , Variação Biológica da População , Tamanho Corporal , Animais , Evolução Biológica , Interação Gene-Ambiente , Características de História de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...